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Introduction to Number Systems 

There are different characteristics that define a number system include the 

number of independent digits used in the number system, the place values of the 

different digits constituting the number and the maximum numbers that can be 

written with the given number of digits. Among the three characteristic parameters, 

the most fundamental is the number of independent digits or symbols used in the 

number system.. It is known as the radix or base of the number system. The decimal 

number system with which we are all so familiar can be said to have a radix of 10 as 

it has 10 independent digits, i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Similarly, the binary 

number system with only two independent digits, 0 and 1, is a radix-2 number 

system. The octal and hexadecimal number systems have a radix (or base) of 8 and 

16 respectively. We will see in the following sections that the radix of the number 

system also determines the other two characteristics. The place values of different 

digits in the integer part of the number are given by ( ࢘૙, ࢘૚,࢘૛, ࢘૜) and so on, 

starting with the digit adjacent to the radix point. For the fractional part, these are 

 .and so on, again starting with the digit next to the radix point (૝ି࢘ ,૜ି࢘,૛ି࢘ ,૚ି࢘ )

Here, r is the radix of the number system. Also, maximum numbers that can be 

written with n digits in a given number system are equal to r୬. 

Basic Number system 

1. Decimal Number System 

The decimal number system is a radix-10 number system and therefore has 10 

different digits or symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher numbers 

after ‘9’ are represented in terms of these 10 digits only. The process of writing 

higher-order numbers after ‘9’ consists in writing the second digit (i.e. ‘1’) first, 

followed by the other digits, one by one, to obtain the next 10 numbers from ‘10’ to 

‘19’. The next 10 numbers from ‘20’ to ‘29’ are obtained by writing the third digit 

(i.e. ‘2’) first, followed by digits ‘0’ to ‘9’, one by one. The process continues until 
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we have exhausted all possible two-digit combinations and reached ‘99’. Then we 

begin with three-digit combinations. The first three-digit number consists of the 

lowest two-digit number followed by ‘0’ (i.e. 100), and the process goes on endlessly. 

The place values of different digits in a mixed decimal number, starting from the 

decimal point, are ( ૚૙૙, ૚૙૚,૚૙૛, ૚૙૜) and so on (for the integer part) and ( ૚૙ି૚, 

૚૙ି૛,૚૙ି૜, ૚૙ି૝)and so on (for the fractional part). 

 

Example:  the decimal number 3586.265 can be expressed as 
 
3586 = 6×10଴ + 8× 10ଵ+ 5× 10ଶ + 3×	10ଷ = 6+80+500+3000 = 3586 

265 = 2×10ିଵ+ 6×10ିଶ + 5×10ିଷ = 0.2+0.06+0.005 = 0.265 

 

2.  Binary Number System 

The binary number system is a radix-2 number system with ‘0’ and ‘1’ as the 

two independent digits. All larger binary numbers are represented in terms of ‘0’ and 

‘1’. The procedure for writing higher order binary numbers after ‘1’ is similar to the 

one explained in the case of the decimal number system. For example, the first 16 

numbers in the binary number system would be 0, 1, 10, 11, 100, 101, 110, 111, 

1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111. The next number after 1111 is 

10000, which is the lowest binary number with five digits. This also proves the point 

made earlier that a maximum of only 16 = (2ସ) numbers could be written with four 

digits. Starting from the binary point, the place values of different digits in a mixed 

binary number are ( ૛૙, ૛૚,૛૛, ૛૜) and so on (for the integer part) ( ૛ି૚, ૛ି૛,૛ି૜, 

૛ି૝) and so on (for the fractional part). 

 

3. Octal Number System 

The octal number system has a radix of 8 and therefore has eight distinct digits. 

All higher-order numbers are expressed as a combination of these on the same pattern 
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as the one followed in the case of the binary and decimal number systems. The 

independent digits are 0, 1, 2, 3, 4, 5, 6 and 7. The next 10 numbers that follow ‘7’, 

for example, would be 10, 11, 12, 13, 14, 15, 16, 17, 20 and 21. In fact, if we omit all 

the numbers containing the digits 8 or 9, or both, from the decimal number system, 

we end up with an octal number system. The place values for the different digits in 

the octal number system are ( ૡ૙, ૡ૚,ૡ૛, ૡ૜) and so on (for the integer part) ( ૡି૚, 

ૡି૛,ૡି૜, ૡି૝) and so on (for the fractional part). 

 

4. Hexadecimal Number System 

The hexadecimal number system is a radix-16 number system and its 16 basic 

digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The place values or weights 

of different digits in a mixed hexadecimal number are ( ૚૟૙, ૚૟૚,૚૟૛, ૚૟૜) and so 

on (for the integer part) ( ૚૟ି૚, ૚૟ି૛,૚૟ି૜, ૚૟ି૝) and so on (for the fractional 

part). The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14 and 15 

respectively, for obvious reasons. The hexadecimal number system provides a 

condensed way of representing large binary numbers stored and processed inside the 

computer. One such example is in representing addresses of different memory 

locations. Let us assume that a machine has 64K of memory. Such a memory has 64K 

(=	2ଵ଺ = 65 536) memory locations and needs 65 536 different addresses. These 

addresses can be designated as 0 to 65 535 in the decimal number system and 

00000000 00000000 to 11111111 11111111 in the binary number system. The 

decimal number system is not used in computers and the binary notation here appears 

too cumbersome and inconvenient to handle. In the hexadecimal number system, 65 

536 different addresses can be expressed with four digits from 0000 to FFFF. 

Similarly, the contents of the memory when represented in hexadecimal form are 

very convenient to handle. 
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Binary-to-Decimal Conversion 

Example : determined The decimal equivalent of the binary number ሺ1101ሻଶ ? 

ሺ1101ሻଶ = 1 × 2଴ + 0 × 2ଵ + 1× 2ଶ + 1 × 2ଷ= ሺ13ሻଵ଴ 

 

Example : determined The decimal equivalent of the binary number ሺ01010ሻଶ ? 

ሺ01010ሻଶ= 0 × 2଴ + 1 × 2ଵ + 0× 2ଶ + 1 × 2ଷ + 0× 2ସ =ሺ10ሻଵ଴ 

 

Example : determined The decimal equivalent of the binary number ሺ1001.0101ሻଶ ? 

The decimal equivalent of the binary number ሺ1001.0101ሻଶ is determined as : 

• The integer part = 1001 

• The decimal equivalent = 1 × 2଴ + 0 × 2ଵ + 0 × 2ଶ + 1 × 2ଷ = 1 + 0 + 0 + 8 = 9 

• The fractional part = .0101 

• Therefore, the decimal equivalent = 0 × 2ିଵ+ 1 × 2ିଶ+ 0 × 2ିଷ + 1 × 2ିସ  

= 0 + 0.25 + 0 + 0.0625 = 0.3125 

• Therefore, the decimal equivalent of ሺ1001.0101ሻଶ = 9.3125 

 

Decimal-to-Binary Conversion 

As outlined earlier, the integer and fractional parts are worked on separately. For the 

integer part, the binary equivalent can be found by successively dividing the integer 

part of the number by 2 and recording the remainders until the quotient becomes ‘0’. 

The remainders written in reverse order constitute the binary equivalent. For the 

fractional part, it is found by successively multiplying the fractional part of the 

decimal number by 2 and recording the carry until the result of multiplication is ‘0’. 

The carry sequence written in forward order constitutes the binary equivalent of the 

fractional part of the decimal number. If the result of multiplication does not seem to 

be heading towards zero in the case of the fractional part, the process may be 

continued only until the requisite number of equivalent bits has been obtained. This 
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method of decimal–binary conversion is popularly known as the double-dabble 

method. The process can be best illustrated with the help of an example. 

Example : find the binary equivalent of ሺ13.375ሻଵ଴ 

• The integer part = 13 

                            Remainder 

13 ÷ 2    =  6                   1 

6   ÷ 2    =  3                   0 

3   ÷ 2    =  1                   1 

1   ÷ 2    =  0                    1 

 

The binary equivalent of =  ሺ13ሻଵ଴= ሺ1101ሻଶ 

 

• The fractional part = .375 

• 0.375 × 2 = 0.75               with a carry of        0 

• 0.75 × 2 = 0.5                  with a carry of         1 

• 0.5 × 2 = 0                       with a carry of         1 

• The binary equivalent of (0.375)10= (.011)2 

• Therefore, the binary equivalent of (13.375)10 = (1101.011)2 

 

Homework : 

 find the binary equivalent of ሺ10ሻଵ଴ ? 

 find the binary equivalent of ሺ25ሻଵ଴ ? 

 find the binary equivalent of ሺ0.101ሻଵ଴ ? 

 find the binary equivalent of ሺ110.011ሻଵ଴ ? 

 find the binary equivalent of ሺ10.01ሻଵ଴ ? 

 find the binary equivalent of ሺ0.125ሻଵ଴ ? 

 find the binary equivalent of ሺ0.17ሻଵ଴ ? 
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Octal-to-Decimal Conversion 

The decimal equivalent of the octal number ሺ137.21ሻ଼ is determined as follows: 

• The integer part = 137 

• The decimal equivalent = 7 × 8଴+ 3 × 8ଵ + 1 × 8ଷ = 7 + 24 + 64 = 95  

• The fractional part = .21 

• The decimal equivalent = 2 × 8ିଵ+ 1 × 8ିଶ= 0.265 

• Therefore, the decimal equivalent of ሺ137.21ሻ଼ = ሺ95.265ሻଵ଴ 

 

Decimal-to-Octal Conversion 

The process of decimal-to-octal conversion is similar to that of decimal-to-binary 

conversion. The progressive division in the case of the integer part and the 

progressive multiplication while working on the fractional part here are by ‘8’ which 

is the radix of the octal number system. Again, the integer and fractional parts of the 

decimal number are treated separately. The process can be best illustrated with the 

help of an example. 

Example  

We will find the octal equivalent of (73.75)10 ? 

• The integer part = 73 

                            Remainder 

73 ÷ 8    =  9                   1 

9   ÷ 8    =  1                   1 

1   ÷ 8    =  0                   1 

• The octal equivalent of (73)10 = (111)8 

• The fractional part = 0.75 

• 0.75 × 8 = 0                    with a carry of        6 

• The octal equivalent of (73)10 = (111)8 

• The octal equivalent of (0.75)10= (.6)8 

• Therefore, the octal equivalent of (73.75)10 = (111.6)8 
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Homework : 

 find the octal equivalent of ሺ105ሻଵ଴ ? 

 find the decimal equivalent of  ሺ127ሻ଼ ? 

 find the decimal equivalent of ሺ75.23ሻ଼ ? 

 find the decimal equivalent of ሺ10.01ሻ଼ ? 

 

Hexadecimal-to-Decimal Conversion 

The decimal equivalent of the hexadecimal number ሺ1E0.2Aሻ	ଵ଺is determined as 

follows: 

• The integer part = 1E0 

• The decimal equivalent = 0 × 16଴ + 14 × 16ଵ + 1 × 16ଶ = 0 + 224 + 256 = 480 

• The fractional part = 2A 

• The decimal equivalent = 2 × 16ିଵ+ 10 × 16ିଶ= 0.164 

• Therefore, the decimal equivalent of ሺ1E0.2Aሻ	ଵ଺= ሺ480.164ሻଵ଴ 

 

Decimal-to-Hexadecimal Conversion 

The process of decimal-to-hexadecimal conversion is also similar. Since the 

hexadecimal number system has a base of 16, the progressive division and 

multiplication factor in this case is 16. The process is illustrated further with the help 

of an example. 

Example  

Let us determine the hexadecimal equivalent of (82.25)10? 

• The integer part = 82 

                               Remainder 

82 ÷ 16    =  5                  2 

5 ÷ 16    =  0                    5 

• The hexadecimal equivalent of (82)10 = (52)16 

• The fractional part = 0.25 
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• 0.25 × 16 = 0                   with a carry of          4 

• Therefore, the hexadecimal equivalent of (82.25)10 = (52.4)16 

Homework : 

 find the hexadecimal equivalent of ሺ100ሻଵ଴ ? 

 find the decimal equivalent of  ሺA1Cሻ	ଵ଺ ? 

 find the decimal equivalent of ሺAF. 3Cሻ	ଵ଺? 

Binary–Octal and Octal–Binary Conversions 

An octal number can be converted into its binary equivalent by replacing each octal 

digit with its three-bit binary equivalent. We take the three-bit equivalent because the 

base of the octal number system is 8 and it is the third power of the base of the binary 

number system, i.e. 2. All we have then to remember is the three-bit binary 

equivalents of the basic digits of the octal number system. A binary number can be 

converted into an equivalent octal number by splitting the integer and fractional parts 

into groups of three bits, starting from the binary point on both sides. The 0s can be 

added to complete the outside groups if needed. 

Example  

Let us find the binary equivalent of (374.26)8 and the octal equivalent of 

(1110100.0100111)2? 

Solution 

• The given octal number = (374.26)8 

• The binary equivalent = (011 111 100.010 110)2= (011111100.010110)2 

• Any 0s on the extreme left of the integer part and extreme right of the fractional part 

of the equivalent binary number should be omitted. Therefore, (011111100.010110)2 

= (11111100.01011)2 

• The given binary number = (1110100.0100111)2 = (1110100.0100111)2 

= (1 110 100.010 011 1)2 = (001 110 100.010 011 100)2 = (164.234)8 

Homework : 

 find the Binary equivalent of ሺ23ሻ଼ ? 
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 find the Binary equivalent of ሺ756ሻ଼ ? 

 find the Binary  equivalent of ሺ75.23ሻ଼ ? 

 find the octal equivalent of ሺ0001.1010ሻଶ ? 

 

Hex–Binary and Binary–Hex Conversions 

A hexadecimal number can be converted into its binary equivalent by replacing each 

hex digit with its four-bit binary equivalent. We take the four-bit equivalent because 

the base of the hexadecimal number system is 16 and it is the fourth power of the 

base of the binary number system. All we have then to remember is the four-bit 

binary equivalents of the basic digits of the hexadecimal number system. A given 

binary number can be converted into an equivalent hexadecimal number by splitting 

the integer and fractional parts into groups of four bits, starting from the binary point 

on both sides. The 0s can be added to complete the outside groups if needed. 

Example  

Let us find the binary equivalent of (17E.F6)16 and the hex equivalent of 

(1011001110.011011101)2 ? 

• The given hex number = (17E.F6)16 

• The binary equivalent = (0001 0111 1110.1111 0110)2  

=(000101111110.11110110)2  = (101111110.1111011)2 

• The 0s on the extreme left of the integer part and on the extreme right of the 

fractional part have been omitted. 

• The given binary number = (1011001110.011011101)2 

= (10 1100 1110.0110 1110 1)2 

• The hex equivalent = (0010 1100 1110.0110 1110 1000)2 = (2CE.6E8)16 

 

Hex–Octal and Octal–Hex Conversions 

For hexadecimal–octal conversion, the given hex number is firstly converted 

into its binary equivalent which is further converted into its octal equivalent. An 
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alternative approach is firstly to convert the given hexadecimal number into its 

decimal equivalent and then convert the decimal number into an equivalent octal 

number. The former method is definitely more convenient and straightforward. For 

octal–hexadecimal conversion, the octal number may first be converted into an 

equivalent binary number and then the binary number transformed into its hex 

equivalent. The other option is firstly to convert the given octal number into its 

decimal equivalent and then convert the decimal number into its hex equivalent. The 

former approach is definitely the preferred one. Two types of conversion are 

illustrated in the following example. 

Example  

Let us find the octal equivalent of (2F.C4)16 and the hex equivalent of (762.013)8 ? 

Solution 

• The given hex number = (2F.C4)16. 

• The binary equivalent = (0010 1111.1100 0100)2 

= (00101111.11000100)2 = (101111.110001)2 = (101 111.110 001)2 = (57.61)8. 

• The given octal number = (762.013)8. 

• The octal number = (762.013)8 = (111 110 010.000 001 011)2 

= (111110010.000001011)2 = (0001 1111 0010.0000 0101 1000)2 = (1F2.058)16. 

Digital Arithmetic 

Basic Rules of Binary Addition and Subtraction 

The basic principles of binary addition and subtraction are similar to what we all 

know so well in the case of the decimal number system. In the case of addition, 

adding ‘0’ to a certain digit produces the same digit as the sum, and, when we add ‘1’ 

to a certain digit or number in the decimal number system, the result is the next 

higher digit or number, as the case may be. For example, 6 + 1 in decimal equals ‘7’ 

because ‘7’ immediately follows ‘6’ in the decimal number system. Also, 7 + 1 in 

octal equals ‘10’ as, in the octal number system, the next adjacent higher number 
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after ‘7’ is ‘10’. Similarly, 9 + 1 in the hexadecimal number system is ‘A’. With this 

background, we can write the basic rules of binary addition as follows: 

1)  0 + 0 = 0. 

2)  0 + 1 = 1. 

3)  1 + 0 = 1. 

4)  1 + 1 = 0              with a carry of ‘1’ to the next more significant bit. 

5)  1 + 1 + 1 = 1        with a carry of ‘1’ to the next more significant bit. 

Table (1) summarizes the sum and carry outputs of all possible three-bit 

combinations. We have taken three-bit combinations as, in all practical situations 

involving the addition of two larger bit numbers, we need to add three bits at a time. 

Two of the three bits are the bits that are part of the two binary numbers to be added, 

and the third bit is the carry-in from the next less significant bit column. 

Table( 1) Binary addition of three bits. 

A           B         Carry- in (Cin)             Sum                     Carry-out (Cout) 

 

0 0             0 0 0 

0 0             1 1 0 

0 1             0 1 0 

0 1             1 0 1 

1 0             0 1 0 

1 0             1 0 1 

1 1              0 0 1 

1 1              1 1 1 
 

The basic principles of binary subtraction include the following: 

1)  0 − 0 = 0. 

2)  1 − 0 = 1. 

3)  1 − 1 = 0. 

4)  0 − 1 = 1       with a borrow of 1 from the next more significant bit. 



Lecture NO.: One Logic Lecture M.Sc Adham Hadi 

 
12 

 

The above-mentioned rules can also be explained by recalling rules for 

subtracting decimal numbers. Subtracting ‘0’ from any digit or number leaves the 

digit or number unchanged. This explains the first two rules. Subtracting ‘1’ from any 

digit or number in decimal produces the immediately preceding digit or number as 

the answer. In general, the subtraction operation of larger-bit binary numbers also 

involves three bits, including the two bits involved in the subtraction, called the 

minuend (the upper bit) and the subtrahend (the lower bit), and the borrow-in. The 

subtraction operation produces the difference output and borrow-out, if any. Table (2) 

summarizes the binary subtraction operation. The entries in Table (2) can be 

explained by recalling the basic rules of binary subtraction mentioned above, and that 

the subtraction operation involving three bits, that is, the minuend (A), the subtrahend 

(B) and the borrow-in (Bin), produces a difference output equal to (A − B – Bin). It 

may be mentioned here that, in the case of subtraction of larger-bit binary numbers, 

the least significant bit column always involves two bits to produce a difference 

output bit and the borrow-out bit. The borrow-out bit produced here becomes the 

borrow-in bit for the next more significant bit column, and the process continues until 

we reach the most significant bit column. 

Table 3.2 Binary subtraction. 

A (Minuend)   B(Subtrahend)  (Bin) Borrow-in   D(Different)   Bout (Borrow-out) 

 

0                  0                        0                      0         0 

0                  0                        1                      1                         1 

0                  1                        0                      1         1 

0                  1                        1                      0         1 

1                  0                        0                      1         0 

1                  0                        1                      0         0 

1                1                     0                      0         0 

1                  1                        1                       1                          1 
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Number Systems – Some Common Terms 

In this section we will describe some commonly used terms with reference to 

different number systems. 

Binary Number System 

Bit is an abbreviation of the term ‘binary digit’ and is the smallest unit of 

information. It is either ‘0’ or ‘1’. A byte is a string of eight bits. The byte is the basic 

unit of data operated upon as a single unit in computers. A computer word is again a 

string of bits whose size, called the ‘word length’ or ‘word size’, is fixed for a 

specified computer, although it may vary from computer to computer. The word 

length may equal one byte, two bytes, four bytes or be even larger. The 1’s 

complement of a binary number is obtained by complementing all its bits, i.e. by 

replacing 0s with 1s and 1s with 0s. For example, the 1’s complement of 

ሺ10010110ሻଶ isሺ01101001ሻ	ଶ. The 2’s complement of a binary number is obtained 

by adding ‘1’ to its 1’s complement. The 2’s complement of ሺ10010110ሻଶ is 

ሺ01101010ሻଶ. 

Example : 

  1101  1101 

-1011    1’s complement +  0100 

                                       1 0001 

                                                 +    1    The final carry has been added 

                                                 0010  

 

Example : 

  1011      1011 

-1101      1’s complement +  0010 

                                               0 1101   1’s complement - 0010 

Since there are no carry take 1’s complement and put minus (-0010) 



Lecture NO.: One Logic Lecture M.Sc Adham Hadi 

 
14 

 

Homework : 

 1111 – 1011 = find the result using 1’s complement  ? 

 1011 – 1010 = find the result using 1’s complement  ? 

 110 – 11 = find the result using 1’s complement  ? 

Example : 

  1101                                                       1101 

-1011    2’s complement 0100 +1            0101 

       1 0010 

The final carry has been disregarded the result is 0010 

 

Example : 

  101                                                                101 

-111    2’s complement    000 +1           001 

                                                                    0 110    2’s complement - 010 

Since there are no carry take 2’s complement and put minus (-010) 

 

Homework : 

 101 – 100 = find the result using 2’s complement  ? 

 1110 – 11 = find the result using 1’s complement  ? 

 

Decimal Number System 

Corresponding to the 1’s and 2’s complements in the binary system, in the 

decimal number system we have the 9’s and 10’s complements. The 9’s complement 

of a given decimal number is obtained by subtracting each digit from 9. For example, 

the 9’s complement of ሺ2496ሻଵ଴ would be ሺ7503ሻଵ଴. The 10’s complement is 

obtained by adding ‘1’ to the 9’s complement. The 10’s complement of ሺ2496ሻଵ଴ is 

ሺ7504ሻଵ଴. 
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Example : 

   75                                        75 

- 28    9’s complement           + 71 

                                            1   46      

    1    The final carry has been added  

 47 

Example : 

   75                                        75 

- 28    10’s complement        +   72 

                                            1 47 

The final carry has been disregarded the result is 47      

Homework : 

 28 – 75 = find the result using 10’s complement  ? 

 28 – 75 = find the result using 9’s complement  ? 

 

Octal Number System 

In the octal number system, we have the 7’s and 8’s complements. The 7’s 

complement of a given octal number is obtained by subtracting each octal digit from 

7. For example, the 7’s complement of ሺ562ሻ଼ would beሺ215ሻ଼. The 8’s complement 

is obtained by adding ‘1’ to the 7’s complement. The 8’s complement of ሺ562ሻ଼ 

would be ሺ216ሻ଼. 

Hexadecimal Number System 

The 15’s and 16’s complements are defined with respect to the hexadecimal number 

system. The 15’s complement is obtained by subtracting each hex digit from 15. For 

example, the 15’s complement of ሺ3ܨܤሻଵ଺ would beሺ40ܥሻଵ଺. The 16’s complement is 

obtained by adding ‘1’ to the 15’s complement. The 16’s complement of 

ሺ2ܧܣሻଵ଺	would beሺ52ܦሻଵ଺. 
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Sign-Bit Magnitude 

In the sign-bit magnitude representation of positive and negative decimal 

numbers, the MSB represents the ‘sign’, with a ‘0’ denoting a plus sign and a ‘1’ 

denoting a minus sign. The remaining bits represent the magnitude. In eight-bit 

representation, while MSB represents the sign, the remaining seven bits represent the 

magnitude. For example, the eight-bit representation of +9 would be 00001001, and 

that for −9 would be 10001001. An n−bit binary representation can be used to 

represent decimal numbers in the range of − ( 2୬ିଵ−1) to + (2୬ିଵ−1). That is, eight-

bit representation can be used to represent decimal numbers in the range from −127 

to +127 using the sign-bit magnitude format. 

 

1’s Complement 

In the 1’s complement format, the positive numbers remain unchanged. The 

negative numbers are obtained by taking the 1’s complement of the positive 

counterparts. For example, +9 will be represented as 00001001 in eight-bit notation, 

and −9 will be represented as 11110110, which is the 1’s complement of 00001001. 

Again, n-bit notation can be used to represent numbers in the range from − ( 2୬ିଵ−1) 

to + (2୬ିଵ−1). using the 1’s complement format. The eight-bit representation of the 

1’s complement format can be used to represent decimal numbers in the range from 

−127 to +127. 

 

2’s Complement 

In the 2’s complement representation of binary numbers, the MSB represents 

the sign, with a ‘0’ used for a plus sign and a ‘1’ used for a minus sign. The 

remaining bits are used for representing magnitude. Positive magnitudes are 

represented in the same way as in the case of sign-bit or 1’s complement 

representation. Negative magnitudes are represented by the 2’s complement of their 

positive counterparts. For example, +9 would be represented as 00001001, and −9 
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would be written as 11110111. Please note that, if the 2’s complement of the 

magnitude of +9 gives a magnitude of −9, then the reverse process will also be true, 

i.e. the 2’s complement of the magnitude of −9 will give a magnitude of +9. The n-bit 

notation of the 2’s complement format can be used to represent all decimal numbers 

in the range from −( 2୬ିଵ−1) to + (2୬ିଵ). The 2’s complement format is very popular 

as it is very easy to generate the 2’s complement of a binary number and also because 

arithmetic operations are relatively easier to perform when the numbers are 

represented in the 2’s complement format. 

Example  

Find the decimal equivalent of the following binary numbers expressed in the 2’s 

complement format: 

(a) 00001110; 

(b) 10001110. 

Solution 

(a) The MSB bit is ‘0’, which indicates a plus sign. The magnitude bits are 0001110. 

The decimal equivalent = 0×2଴ + 1×2ଵ+ 1×2ଶ + 1×2ଷ+ 0×2ସ + 0×2ହ+ 0×2଺ = 

0+2+4+8+0+0+0 = 14 Therefore, 00001110 represents +14 

(b) The MSB bit is ‘1’, which indicates a minus sign. The magnitude bits are 

therefore given by the 2’s complement of 0001110, i.e. 1110010 The decimal 

equivalent = 0×2଴ + 1×2ଵ + 0×2ଶ + 0×2ଷ + 1×2ସ + 1×2ହ + 1×2଺ = 

0+2+0+0+16+32+64 = 114 Therefore, 10001110 represents −114. 
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Addition Using the 2’s Complement Method 

The 2’s complement is the most commonly used code for processing positive and 

negative binary numbers. It forms the basis of arithmetic circuits in modern 

computers. When the decimal numbers to be added are expressed in 2’s complement 

form, the addition of these numbers, following the basic laws of binary addition, 

gives correct results. Final carry obtained, if any, while adding MSBs should be 

disregarded. To illustrate this, we will consider the following four different cases: 

1. Both the numbers are positive. 

2. Larger of the two numbers is positive. 

3. The larger of the two numbers is negative. 

4. Both the numbers are negative. 

Case 1 

• Consider the decimal numbers +37 and +18. 

• The 2’s complement of +37 in eight-bit representation = 00100101. 

• The 2’s complement of +18 in eight-bit representation = 00010010. 

• The addition of the two numbers, that is, +37 and +18, is performed as follows 

   00100101 

+ 00010010  

= 00110111 

• The decimal equivalent of (00110111)2 is (+55), which is the correct answer. 

Case 2 

• Consider the two decimal numbers +37 and -18. 

• The 2’s complement representation of +37 in eight-bit representation = 00100101. 

• The 2’s complement representation of −18 in eight-bit representation = 11101110. 

• The addition of the two numbers, that is, +37 and −18, is performed as follows: 

   00100101 

+ 11101110  

= 00010011         The final carry has been disregarded. 
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• The decimal equivalent of (00010011)2 is +19, which is the correct answer. 

Case 3 

• Consider the two decimal numbers +18 and −37. 

• −37 in 2’s complement form in eight−bit representation = 11011011. 

• +18 in 2’s complement form in eight−bit representation = 00010010. 

• The addition of the two numbers, that is, −37 and +18, is performed as follows: 

   11011011 

+ 00010010 

   11101101 

• The decimal equivalent of (11101101)2, which is in 2’s complement form, is −19, 

which is the correct answer.  

Case 4 

• Consider the two decimal numbers −18 and −37. 

• −18 in 2’s complement form is 11101110. 

• −37 in 2’s complement form is 11011011. 

• The addition of the two numbers, that is, −37 and −18, is performed as follows: 

   11011011 

+ 11101110 

   11001001 

• The final carry in the ninth bit position is disregarded. 

• The decimal equivalent of (11001001)2, which is in 2’s complement form, is −55, 

which is thecorrect answer. 

It may also be mentioned here that, in general, 2’s complement notation can be used 

to perform addition when the expected result of addition lies in the range from −2n−1 

to +(2n−1− 1), n being the number of bits used to represent the numbers. As an 

example, eight-bit 2’s complement arithmetic cannot be used to perform addition if 

the result of addition lies outside the range from −128 to +127. 
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Different steps to be followed to do addition in 2’s complement arithmetic are 

summarized as follows: 

1. Represent the two numbers to be added in 2’s complement form. 

2. Do the addition using basic rules of binary addition. 

3. Disregard the final carry, if any. 

4. The result of addition is in 2’s complement form. 

Example 3.1 

Perform the following addition operations: 

1. (275.75)10+ (37.875)10. 

2. (AF1.B3)16+ (FFF.E)16. 

Solution 

1. As a first step, the two given decimal numbers will be converted into their 

equivalent binary numbers : 

(275.75)10 = (100010011.11)2 and (37.875)10 = (100101.111)2 The two binary 

numbers can be rewritten as (100010011.110)2 and (000100101.111)2 to have the 

same number of bits in their integer and fractional parts. The addition of two numbers 

is performed as follows: 

100010011_110 

000100101_111 

100111001_101 

The decimal equivalent of (100111001.101)2 is (313.625)10. 

2. (AF1.B3)16 

=(101011110001.10110011)2 and (FFF.E)16 

=(111111111111.1110)2. (1111111111 

11.1110)2 can also be written as (111111111111.11100000)2 to have the same 

number of bits in 

the integer and fractional parts. The two numbers can now be added as follows: 

0101011110001_10110011 
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0111111111111_11100000 

1101011110001_10010011 

The hexadecimal equivalent of (1101011110001.10010011)2 is (1AF1.93)16, which 

is equal to the 

hex addition of (AF1.B3)16 and (FFF.E)16. 

Example 3.2 

Find out whether 16-bit 2’s complement arithmetic can be used to add 14 276 and 18 

490. 

Solution 

The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-bit 2’s 

complement 

arithmetic has a range of −215 to +(215− 1), i.e. −32 768 to +32 767. The expected 

result is inside 

the allowable range. Therefore, 16-bit arithmetic can be used to add the given 

numbers. 

Example 3.3 

Add −118 and −32 firstly using eight-bit 2’s complement arithmetic and then using 

16-bit 2’s 

complement arithmetic. Comment on the results. 

Solution 

• −118 in eight-bit 2’s complement representation = 10001010. 

• −32 in eight-bit 2’s complement representation = 11100000. 

• The addition of the two numbers, after disregarding the final carry in the ninth bit 

position, is 

01101010. Now, the decimal equivalent of (01101010)2, which is in 2’s complement 

form, is +106. 

The reason for the wrong result is that the expected result, i.e. −150, lies outside the 

range of 
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eight-bit 2’s complement arithmetic. Eight-bit 2’s complement arithmetic can be used 

when the 

expected result lies in the range from −27 to + (27 − 1), i.e. −128 to +127. −118 in 

16-bit 2’s 

complement representation = 1111111110001010. 

• −32 in 16-bit 2’s complement representation = 1111111111100000. 

• The addition of the two numbers, after disregarding the final carry in the 17th 

position, produces 

1111111101101010. The decimal equivalent of (1111111101101010)2, which is in 

2’s complement 

form, is −150, which is the correct answer. 16-bit 2’s complement arithmetic has 

produced the 

correct result, as the expected result lies within the range of 16-bit 2’s complement 

notation. 

3.3 Subtraction of Larger-Bit Binary Numbers 

Subtraction is also done columnwise in the same way as in the case of the decimal 

number system. 

In the first step, we subtract the LSBs and subsequently proceed towards the MSB. 

Wherever the 

subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from the 

next adjacent 

higher bit position having a ‘1’. As an example, let us go through different steps of 

subtracting (1001)2 

from (1100)2. 

In this case, ‘1’ is borrowed from the second MSB position, leaving a ‘0’ in that 

position. The 

borrow is first brought to the third MSB position to make it ‘10’. Out of ‘10’ in this 

position, 
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‘1’ is taken to the LSB position to make ‘10’ there, leaving a ‘1’ in the third MSB 

position. 

10−1 in the LSB column gives ‘1’, 1−0 in the third MSB column gives ‘1’, 0−0 in the 

second 

MSB column gives ‘0’ and 1−1 in the MSB also gives ‘0’ to complete subtraction. 

Subtraction 

of mixed numbers is also done in the same manner. The above-mentioned steps are 

summarized 

as follows: 

1. 1 1 0 0 2. 1 1 0 0 

1 0 0 1 1 0 0 1 

1 1 1 

3. 1 1 0 0 4. 1 1 0 0 

1 0 0 1 1 0 0 1 

0 1 1 0 0 1 1 

3.3.1 Subtraction Using 2’s Complement Arithmetic 

Subtraction is similar to addition. Adding 2’s complement of the subtrahend to the 

minuend and 

disregarding the carry, if any, achieves subtraction. The process is illustrated by 

considering six 

different cases: 

1. Both minuend and subtrahend are positive. The subtrahend is the smaller of the 

two. 

2. Both minuend and subtrahend are positive. The subtrahend is the larger of the two. 

3. The minuend is positive. The subtrahend is negative and smaller in magnitude. 

4. The minuend is positive. The subtrahend is negative and greater in magnitude. 

5. Both minuend and subtrahend are negative. The minuend is the smaller of the two. 

6. Both minuend and subtrahend are negative. The minuend is the larger of the two. 
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Case 1 

• Let us subtract +14 from +24. 

• The 2’s complement representation of +24 = 00011000. 

• The 2’s complement representation of +14 = 00001110. 

• Now, the 2’s complement of the subtrahend (i.e. +14) is 11110010. 

• Therefore, +24 − (+14) is given by 

00011000 

+ 11110010 

00001010 

with the final carry disregarded. 

• The decimal equivalent of (00001010)2 is +10, which is the correct answer. 

Case 2 

• Let us subtract +24 from +14. 

• The 2’s complement representation of +14 = 00001110. 

• The 2’s complement representation of +24 = 00011000. 

• The 2’s complement of the subtrahend (i.e. +24) = 11101000. 

• Therefore, +14 − (+24) is given by 

00001110 

+ 11101000 

11110110 

• The decimal equivalent of (11110110)2, which is of course in 2’s complement 

form, is −10 which 

is the correct answer. 

Case 3 

• Let us subtract −14 from +24. 

• The 2’s complement representation of +24 = 00011000 = minuend. 

• The 2’s complement representation of −14 = 11110010 = subtrahend. 

• The 2’s complement of the subtrahend (i.e. −14) = 00001110. 
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• Therefore, +24 − (−14) is performed as follows: 

00011000 

+ 00001110 

00100110 

• The decimal equivalent of (00100110)2 is +38, which is the correct answer. 

Case 4 

• Let us subtract −24 from +14. 

• The 2’s complement representation of +14 = 00001110 = minuend. 

• The 2’s complement representation of −24 = 11101000 = subtrahend. 

• The 2’s complement of the subtrahend (i.e. −24) = 00011000. 

• Therefore, +14 − (−24) is performed as follows: 

00001110 

+ 00011000 

00100110 

• The decimal equivalent of (00100110)2 is +38, which is the correct answer. 

Case 5 

• Let us subtract −14 from −24. 

• The 2’s complement representation of −24 = 11101000 = minuend. 

• The 2’s complement representation of −14=11110010 = subtrahend. 

• The 2’s complement of the subtrahend = 00001110. 

• Therefore, −24 − (−14) is given as follows: 

11101000 

+ 00001110 

11110110 

• The decimal equivalent of (11110110)2, which is in 2’s complement form, is −10, 

which is the 

correct answer. 

Case 6 
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• Let us subtract −24 from −14. 

• The 2’s complement representation of −14 = 11110010 = minuend. 

• The 2’s complement representation of −24=11101000 = subtrahend. 

• The 2’s complement of the subtrahend = 00011000. 

• Therefore, −14 − (−24) is given as follows: 

11110010 

+ 00011000 

00001010 

with the final carry disregarded. 

• The decimal equivalent of (00001010)2, which is in 2’s complement form, is +10, 

which is the 

correct answer. 

It may be mentioned that, in 2’s complement arithmetic, the answer is also in 2’s 

complement 

notation, only with the MSB indicating the sign and the remaining bits indicating the 

magnitude. In 

2’s complement notation, positive magnitudes are represented in the same way as the 

straight binary 

numbers, while the negative magnitudes are represented as the 2’s complement of 

their straight binary 

counterparts. A ‘0’ in the MSB position indicates a positive sign, while a ‘1’ in the 

MSB position 

indicates a negative sign. 

The different steps to be followed to do subtraction in 2’s complement arithmetic are 

summarized 

as follows: 

1. Represent the minuend and subtrahend in 2’s complement form. 

2. Find the 2’s complement of the subtrahend. 
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3. Add the 2’s complement of the subtrahend to the minuend. 

4. Disregard the final carry, if any. 

5. The result is in 2’s complement form. 

6. 2’s complement notation can be used to perform subtraction when the expected 

result of subtraction 

lies in the range from −2n−1 to +(2n−1− 1), n being the number of bits used to 

represent the 

numbers. 

Example 3.4 

Subtract (1110.011)2 from (11011.11)2 using basic rules of binary subtraction and 

verify the result by 

showing equivalent decimal subtraction. 

Solution 

The minuend and subtrahend are first modified to have the same number of bits in the 

integer and 

fractional parts. The modified minuend and subtrahend are (11011.110)2 and 

(01110.011)2 respectively: 

11011_110 

− 01110_011 

01101_011 

The decimal equivalents of (11011.110)2 and (01110.011)2 are 27.75 and 14.375 

respectively. Their 

difference is 13.375, which is the decimal equivalent of (01101.011)2. 

Example 3.5 

Subtract (a) (−64)10 from (+32)10 and (b) (29.A)16 from (4F.B)16. Use 2’s 

complement arithmetic. 

Solution: 

(a) (+32)10in 2’s complement notation = (00100000)2. 
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(−64)10 in 2’s complement notation = (11000000)2. 

The 2’s complement of (−64)10 

= (01000000)2. 

(+32)10 

− (−64)10 is determined by adding the 2’s complement of (−64)10 to (+32)10. 

Therefore, the addition of (00100000)2 to (01000000)2 should give the result. The 

operation is 

shown as follows: 

00100000 

+ 01000000 

01100000 

The decimal equivalent of (01100000)2 is +96, which is the correct answer as +32 − 

(−64)=+96. 

(b) The minuend = (4F.B)16 

= (01001111.1011)2. 

The minuend in 2’s complement notation = (01001111.1011)2. 

The subtrahend = (29.A)16 

= (00101001.1010)2. 

The subtrahend in 2’s complement notation = (00101001.1010)2. 

The 2’s complement of the subtrahend = (11010110.0110)2. 

(4F.B)16 

−(29.A)16 is given by the addition of the 2’s complement of the subtrahend to the 

minuend. 

01001111_1011 

+ 11010110_0110 

00100110_0001 

with the final carry disregarded. The result is also in 2’s complement form. Since the 

result is a 
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positive number, 2’s complement notation is the same as it would be in the case of 

the straight 

binary code. 

The hex equivalent of the resulting binary number = (26.1)16, which is the correct 

answer. 
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Binary Coded Decimal 

The binary coded decimal (BCD) is a type of binary code used to represent a given 

decimal number in an equivalent binary form. BCD-to-decimal and decimal-to-BCD 

conversions are very easy and straightforward. It is also far less cumbersome an 

exercise to represent a given decimal number in an equivalent BCD code than to 

represent it in the equivalent straight binary form discussed in the previous chapter. 

The BCD equivalent of a decimal number is written by replacing each decimal digit 

in the integer and fractional parts with its four-bit binary equivalent. As an example, 

the BCD equivalent of (23.15)10 is written as (0010 0011.0001 0101)BCD. The BCD 

code described above is more precisely known as the 8421 BCD code, with 8, 4, 2 

and 1 representing the weights of different bits in the four-bit groups, starting from 

MSB and proceeding towards LSB. This feature makes it a weighted code, which 

means that each bit in the four-bit group representing a given decimal digit has an 

assigned 

Decimal         8421 BCD code      4221 BCD code           5421 BCD code 

0                       0000                       0000                           0000 

1                       0001                       0001                            0001 

2                       0010                       0010                            0010 

3                       0011                       0011                            0011 

4                       0100                       1000                            0100 

5                       0101                       0111                            1000 

6                       0110                       1100                            1001 

7                       0111                       1101                            1010 

8                       1000                       1110                            1011 

9                       1001                       1111                            1100 

 

weight. Other weighted BCD codes include the 4221 BCD and 5421 BCD codes. 

Again, 4, 2, 2 and 1 in the 4221 BCD code and 5, 4, 2 and 1 in the 5421 BCD code 
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represent weights of the relevant bits. Table 2.1 shows a comparison of 8421, 4221 

and 5421 BCD codes. As an example, (98.16)10 will be written as 1111 1110.0001 

1100 in 4221 BCD code and 1100 1011.0001 1001 in 5421 BCD code. Since the 

8421 code is the most popular of all the BCD codes, it is simply referred to as the 

BCD code. 

BCD-to-Binary Conversion 

A given BCD number can be converted into an equivalent binary number by first 

writing its decimal equivalent and then converting it into its binary equivalent. we 

will find the binary equivalent of the BCD number 0010 1001.0111 0101: 

• BCD number: 0010 1001.0111 0101. 

• Corresponding decimal number: 29.75. 

• The binary equivalent of 29.75 can be determined to be 11101 for the integer part 

and .11 for the fractional part. 

• Therefore, (0010 1001.0111 0101)BCD =(11101.11)2. 

Binary-to-BCD Conversion 

The process of binary-to-BCD conversion is the same as the process of BCD-to-

binary conversion executed in reverse order. A given binary number can be converted 

into an equivalent BCD number by first determining its decimal equivalent and then 

writing the corresponding BCD equivalent 

 

Excess-3 Code 

The excess-3 code is another important BCD code. It is particularly significant for 

arithmetic operations as it overcomes the shortcomings encountered while using the 

8421 BCD code to add two decimal digits whose sum exceeds 9. The excess-3 code 

has no such limitation, and it considerably simplifies arithmetic operations. Table (1) 

lists the excess-3 code for the decimal numbers 0–9. The excess-3 code for a given 

decimal number is determined by adding ‘3’ to each decimal digit in the given 
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number and then replacing each digit of the newly found decimal number by its four-

bit binary equivalent. It may be mentioned here that, if the addition of ‘3’ to a digit 

produces a carry, as is the case with the digits 7, 8 and 9, that carry should not be 

taken forward. The result of addition should be taken as a single entity and 

subsequently replaced with its excess-3 code equivalent. As an example, let us find 

the excess-3 code for the decimal number 597: 

 

• The addition of ‘3’ to each digit yields the three new digits/numbers ‘8’, ‘12’ and 

‘10’. 

• The corresponding four-bit binary equivalents are 1000, 1100 and 1010 

respectively. 

• The excess-3 code for 597 is therefore given by: 1000 1100 1010=100011001010. 

 

Also, it is normal practice to represent a given decimal digit or number using the 

maximum number of digits that the digital system is capable of handling. For 

example, in four-digit decimal arithmetic, 5 and 37 would be written as 0005 and 

0037 respectively. The corresponding 8421 BCD equivalents would be 

0000000000000101 and 0000000000110111 and the excess-3 code equivalents 

would be 0011001100111000 and 0011001101101010. Corresponding to a given 

excess-3 code, the equivalent decimal number can be determined by first splitting the 

number into four-bit groups, starting from the radix point, and then subtracting 0011 

from each four-bit group. The new number is the 8421 BCD equivalent of the given 

excess-3 code, which can subsequently be converted into the equivalent decimal 

number. As an example, following these steps, the decimal equivalent of excess-3 

number 01010110.10001010 would be 23.57. Another significant feature that makes 

this code attractive for performing arithmetic operations is that the complement of the 

excess-3 code of a given decimal number yields the excess-3 code for 9’s 

complement of the decimal number. As adding 9’s complement of a decimal number 



Lecture NO.: Two Logic Lecture M.Sc Adham Hadi 

 
4 

 

B to a decimal number A achieves A – B, the excess-3 code can be used effectively 

for both addition and subtraction of decimal numbers. 

 Table (1) lists the excess-3 code for the decimal numbers 0–9. 

Decimal number     Excess-3 code         Decimal number          Excess-3 code 

0                              0011                        5                             1000 

1                              0100                        6                             1001 

2                              0101                        7                             1010 

3                              0110                        8                             1011 

4                              0111                        9 1100 

 

Example  

Find (a) the excess-3 equivalent of (237.75)10 and (b) the decimal equivalent of the 

excess-3 number 110010100011.01110101. 

Solution 

(a) Integer part=237. The excess-3 code for (237)10 is obtained by replacing 2, 3 and 

7 with the four-bit binary equivalents of 5, 6 and 10 respectively. This gives the 

excess-3 code for (237)10 as: 0101 0110 1010=010101101010. Binary Codes 23 

Fractional part=.75. The excess-3 code for (.75)10 is obtained by replacing 7 and 5 

with the four-bit binary equivalents of 10 and 8 respectively. That is, the excess-3 

code for (.75)10 =.10101000. Combining the results of the integral and fractional 

parts, the excess-3 code for (237.75)10 =010101101010.10101000. 

(b) The excess-3 code=110010100011.01110101=1100 1010 0011.0111 0101. 

Subtracting 0011 from each four-bit group, we obtain the new number as:  

1001 0111 0000.0100 0010. Therefore, the decimal equivalent=(970.42)10. 
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Gray Code 

The Gray code was designed by Frank Gray at Bell Labs and patented in 1953. It is 

an unweighted binary code in which two successive values differ only by 1 bit. 

Owing to this feature, the maximum error that can creep into a system using the 

binary Gray code to encode data is much less than the worst-case error encountered 

in the case of straight binary encoding. Table (3) lists the binary and Gray code 

equivalents of decimal numbers 0–15. An examination of the four-bit Gray code 

numbers, as listed in Table (3), shows that the last entry rolls over to the first entry. 

That is, the last and the first entry also differ by only 1 bit. This is known as the cyclic 

property of the Gray code. Although there can be more than one Gray code for a 

given word length, the term was first applied to a specific binary code for non-

negative integers and called the binary-reflected Gray code or simply the Gray code. 

There are various ways by which Gray codes with a given number of bits can be 

remembered. One such way is to remember that the least significant bit follows a 

repetitive pattern of ‘2’ (11, 00, 11, _ _ _ ), the next higher adjacent bit follows a 

pattern of ‘4’ (1111, 0000, 1111, _ _ _ ) and so on. We can also generate the n-bit 

Gray code recursively by prefixing a ‘0’ to the Gray code for n−1 bits to obtain the 

first 2n−1 numbers, and then prefixing ‘1’ to the reflected Gray code for n−1 bits to 

obtain the remaining 2n−1 numbers. The reflected Gray code is nothing but the 

code written in reverse order.  
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Table (3)  Gray code. 

Decimal         Binary        Gray         Decimal          Binary             Gray 

0                  0000           0000            8                 1000                1100 

1                  0001           0001            9                 1001                1101 

2                  0010           0011           10                1010                1111 

3                  0011           0010           11                1011                1110 

4                  0100           0110           12                1100                1010 

5                  0101           0111           13                1101                1011 

6                  0110           0101           14                1110                1001 

7                  0111           0100           15                1111                1000 

 

Binary–Gray Code Conversion 

A given binary number can be converted into its Gray code equivalent by going 

through the following steps: 

1. Begin with the most significant bit (MSB) of the binary number. The MSB of the 

Gray code equivalent is the same as the MSB of the given binary number. 

 

2. The second most significant bit, adjacent to the MSB, in the Gray code number is 

obtained by adding the MSB and the second MSB of the binary number and ignoring 

the carry, if any. That is, if the MSB and the bit adjacent to it are both ‘1’, then the 

corresponding Gray code bit would be a ‘0’. 

 

3. The third most significant bit, adjacent to the second MSB, in the Gray code 

number is obtained by adding the second MSB and the third MSB in the binary 

number and ignoring the carry, if any. 

 

4. The process continues until we obtain the LSB of the Gray code number by the 

addition of the LSB and the next higher adjacent bit of the binary number. 
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The conversion process is further illustrated with the help of an example showing 

step-by-step conversion of (1011)2 into its Gray code equivalent:  

Binary 1011 

Gray code 1- - - 

Binary 1011 

Gray code 11- - 

Binary 1011 

Gray code 111- 

Binary 1011 

Gray code 1110 

 

Gray Code–Binary Conversion 

A given Gray code number can be converted into its binary equivalent by going 

through the following steps: 

1. Begin with the most significant bit (MSB). The MSB of the binary number is the 

same as the MSB of the Gray code number. 

2. The bit next to the MSB (the second MSB) in the binary number is obtained by 

adding the MSB in the binary number to the second MSB in the Gray code number 

and disregarding the carry, if any. 

3. The third MSB in the binary number is obtained by adding the second MSB in the 

binary number to the third MSB in the Gray code number. Again, carry, if any, is to 

be ignored. 

4. The process continues until we obtain the LSB of the binary number. The 

conversion process is further illustrated with the help of an example showing step-by-

step conversion of the Gray code number 1110 into its binary equivalent: 

Gray code 1110 

Binary 1- - - 

Gray code 1110 
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Binary 10 - - 

Gray code 1110 

Binary 101 

Gray code 1110 

Binary 1011 

Example  

Find (a) the Gray code equivalent of decimal 13 and (b) the binary equivalent of 

Gray code number 1111. 

Solution 

(a) The binary equivalent of decimal 13 is 1101. 

Binary–Gray conversion 

Binary 1101 

Gray 1- - - 

Binary 1101 

Gray 10 - - 

Binary 1101 

Gray 101 – 

Binary 1101 

Gray 1011 

(b) Gray–binary conversion 

Gray 1111 

Binary 1- - - 

Gray 1111 

Binary 10- - 

Gray 1111 

Binary 101- 

Gray 1111 

Binary 1010 
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Logic Gates 

The Logic gates are electronic circuits that can be used to implement the most 

elementary logic expressions, also known as Boolean expressions. The logic gate is 

the most basic building block of combinational logic. There are three basic logic 

gates, namely the OR gate, the AND gate and the NOT gate. Other logic gates that 

are derived from these basic gates are the NAND gate, the NOR gate, the 

EXCLUSIVEOR gate and the EXCLUSIVE-NOR gate. 

Positive and Negative Logic 

The binary variables, as we know, can have either of the two states, i.e. the logic ‘0’ 

state or the logic ‘1’ state. These logic states in digital systems such as computers, for 

instance, are represented by two different voltage levels or two different current 

levels. If the more positive of the two voltage or current levels represents a logic ‘1’ 

and the less positive of the two levels represents a logic ‘0’, then the logic system is 

referred to as a positive logic system. If the more positive of the two voltage or 

current levels represents a logic ‘0’ and the less positive of the two levels represents a 

logic ‘1’, then the logic system is referred to as a negative logic system. The 

following examples further illustrate this concept. If the two voltage levels are 0 V 

and +5 V, then in the positive logic system the 0 V represents a logic ‘0’ and the +5 

V represents a logic ‘1’. In the negative logic system, 0 V represents a logic ‘1’ and 

+5 V represents a logic ‘0’. If the two voltage levels are 0 V and −5 V, then in the 

positive logic system the 0 V represents a logic ‘1’ and the −5 V represents a logic 

‘0’. In the negative logic system, 0 V represents a logic ‘0’ and −5 V represents a 

logic ‘1’. It is interesting to note, as we will discover in the latter part of the chapter, 

that a positive OR is a negative AND. That is, OR gate hardware in the positive logic 

system behaves like an AND gate in the negative logic system. The reverse is also 

true. Similarly, a positive NOR is a negative NAND, and vice versa. 
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OR Gate 

An OR gate performs an ORing operation on two or more than two logic variables. 

The OR operation on two independent logic variables A and B is written as Y = A+B 

and reads as Y equals A OR B and not as A plus B. An OR gate is a logic circuit with 

two or more inputs and one output. The output of an OR gate is LOW only when all 

of its inputs are LOW. For all other possible input combinations, the output is HIGH. 

This statement when interpreted for a positive logic system means the following. 

The output of an OR gate is a logic ‘0’ only when all of its inputs are at logic ‘0’. For 

all other possible input combinations, the output is a logic ‘1’. Figure below shows 

the circuit symbol and the truth table of a two-input OR gate. The operation of a two-

input OR gate is explained by the logic expression: 

Y = A+B 

 
 

A           B        Y 

 

0 0             0 

0 1             1 

1 0             1 

1 1              1 

 

 

As an illustration, if we have four logic variables and we want to know the logical 

output of (A+ B+C +D), then it would be the output of a four-input OR gate with A, 

B, C and D as its inputs. Y=A+B Figures (a) and (b) show the circuit symbol of 
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three-input and four-input OR gates. Figure (c) shows the truth table of a three-input 

OR gate. Logic expressions explaining the functioning of threei nput and four-input 

OR gates are Y = A+B+C and Y = A+B+C +D. 
 

 

Q/How would you hardware-implement a four-input OR gate using two-input OR 

gates only? 
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Example : Draw the output waveform for the OR gate and the given pulsed input 

waveforms of Fig. 

 

 

 

 AND Gate 

An AND gate is a logic circuit having two or more inputs and one output. The output 

of an AND gate is HIGH only when all of its inputs are in the HIGH state. In all other 

cases, the output is LOW. When interpreted for a positive logic system, this means 

that the output of the AND gate is a logic ‘1’ only when all of its inputs are in logic 

‘1’ state. In all other cases, the output is logic ‘0’. The logic symbol and truth table of 

a two-input AND gate are shown below The AND operation on two independent 

logic variables A and B is written as Y = A.B and reads as Y equals A AND B and 

not as A multiplied by B. Here, A and B are input logic variables and Y is the output. 

An AND gate performs an ANDing operation: 
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• for a two-input AND gate, Y = A.B; 

• for a three-input AND gate, Y = A.B.C; 

• for a four-input AND gate, Y = A.B.C.D. 

If we interpret the basic definition of OR and AND gates for a negative logic system, 

we have an interesting observation. We find that an OR gate in a positive logic 

system is an AND gate in a negative logic system. Also, a positive AND is a negative 

OR. 

Example : 

Show the logic arrangement for implementing a four-input AND gate using two-input 

AND gates only. 

NOT Gate 

A NOT gate is a one-input, one-output logic circuit whose output is always the 

complement of the input. That is, a LOW input produces a HIGH output, and vice 

versa. When interpreted for a positive logic system, a logic ‘0’ at the input produces a 

logic ‘1’ at the output, and vice versa. It is also known as a ‘complementing circuit’ 

or an ‘inverting circuit’.  

The NOT operation on a logic variable X is denoted as Xഥ			or 		Xᇱ . That is, if X is the 

input to a NOT circuit, then its output Y is given by Y = Xഥ	or Xᇱ and reads as Y 

equals NOT X. Thus, if X = 0, Y = 1 and if X = 1, Y = 0. 

Q   /For the logic circuit arrangements of Figs (a) and (b), draw the output 

waveform. 
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EXCLUSIVE-OR Gate 

The EXCLUSIVE-OR gate, commonly written as EX-OR gate, is a two-input, one-

output gate. Figures (a) and (b) respectively show the logic symbol and truth table of 

a two-input EX-OR gate. As can be seen from the truth table, the output of an EX-OR 

gate is a logic ‘1’ when the inputs are unlike and a logic ‘0’ when the inputs are like. 

Although EX-OR gates are available in integrated circuit form only as two-input 

gates, unlike other gates which are available in multiple inputs also, multiple-input 

EX-OR logic functions can be implemented using more than one two-input gates. 

The truth table of a multiple-input EX-OR function can be expressed as follows. The 

output of a multiple-input EX-OR logic function is a logic ‘1’ when the number of 1s 

in the input sequence is odd and a logic ‘0’ when the number of 1s in the input 

sequence is even, including zero. That is, an all 0s input sequence also produces a 

logic ‘0’ at the output. Figure(c) shows the truth table of a four-input EX-OR 

function. The output of a two-input EX-OR gate is expressed by 

Y = A⊕B = AഥB+ABഥ 
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Q: How do you implement three-input and four-input X-OR logic functions with 

the help of two-input EX-OR gates? 

 Q: How can you implement a NOT circuit using a two-input EX-OR gate? 

 

NAND Gate 

NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it a 

NAND gate [Fig. (a)]. Figure (b) shows the circuit symbol of a two-input NAND 

gate. The truth table of a NAND gate is obtained from the truth table of an AND gate 

by complementing the output entries [Fig. (c)]. The output of a NAND gate is a logic 
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‘0’ when all its inputs are a logic ‘1’. For all other input combinations, the output is a 

logic ‘1’. NAND gate operation is logically expressed as 

Y = A. B		തതതതതത 

In general, the Boolean expression for a NAND gate with more than two inputs can 

be written as 

Y =A. B. C. Dതതതതതതതതതതത              

 

NOR Gate 

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a NOR 

gate [Fig. (a)]. The truth table of a NOR gate is obtained from the truth table of an 

OR gate by complementing the output entries. The output of a NOR gate is a logic ‘1’ 

when all its inputs are logic ‘0’. For all other input combinations, the output is a logic 

‘0’. The output of a two-input NOR gate is logically expressed as  

Y = A ൅ B	തതതതതതതത 

In general, the Boolean expression for a NOR gate with more than two inputs can be 

written as 

Y = A ൅ B ൅ C	 ൅ Dതതതതതതതതതതതതതതതതതതത 
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EXCLUSIVE-NOR Gate 

EXCLUSIVE-NOR (commonly written as EX-NOR) means NOT of EX-OR, i.e. the 

logic gate that we get by complementing the output of an EX-OR gate. The truth 

table of an EX-NOR gate is obtained from the truth table of an EX-OR gate by 

complementing the output entries. Logically, The output of a two-input EX-NOR 

gate is a logic ‘1’ when the inputs are like and a logic ‘0’ when they are unlike. In 

general, the output of a multiple-input EX-NOR logic function is a logic ‘0’ when the 

number of 1s in the input sequence is odd and a logic ‘1’ when the number of 1s in 

the input sequence is even including zero. That is, an all 0s input sequence also 

produces a logic ‘1’ at the output. 

Y = A⊕B	
തതതതതതതതതതത

= AB+AഥBഥ 
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H.W : 

Show the logic arrangements for implementing: 
(a) a four-input NAND gate using two-input AND gates and NOT gates; 
(b) a three-input NAND gate using two-input NAND gates; 
(c) a NOT circuit using a two-input NAND gate; 
(d) a NOT circuit using a two-input NOR gate; 
(e) a NOT circuit using a two-input EX-NOR gate. 

 

H.W: 

How do you implement a three-input EX-NOR function using only two-input EX-

NOR gates? 
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Boolean Algebra and 
Simplification Techniques 

 
Boolean algebra is mathematics of logic. It is one of the most basic tools available to 

the logic designer and thus can be effectively used for simplification of complex logic 

expressions. Other useful and widely used techniques based on Boolean theorems 

include the use of Karnaugh maps in what is known as the mapping method of logic 

simplification. 

 

Equivalent and Complement of Boolean Expressions 

Two given Boolean expressions are said to be equivalent if one of them equals ‘1’ 

only when the other equals ‘1’ and also one equals ‘0’ only when the other equals ‘0’. 

They are said to be the complement of each other if one expression equals ‘1’ only 

when the other equals ‘0’, and vice versa. The complement of a given Boolean 

expression is obtained by complementing each literal, changing all ‘.’ to ‘+’ and all 

‘+’ to ‘.’, all 0s to 1s and all 1s to 0s. The examples below give some Boolean 

expressions and their complements: 

 

ഥ۰ۯ =  ഥB+A۰ഥۯ ൅   (ഥ+Bۯ	).തതതതതതതതതതതതത  = (A+۰ഥ)		۰ഥۯ

Where given Boolean expression 

(A+B). (ۯഥ+۰ഥ) = ሺۯ ൅ ۰ሻ. ሺۯഥ ൅ ۰ഥሻതതതതതതതതതതതതതതതതതതതതതത  = AB+ۯഥ ۰ഥ  

 

Example  

Find (a)  the complement of  [(A	۰ഥ 	+۱ത) D +	۳ഥ ] F . 

Solution 

(a) The complement of (A	࡮ഥ ഥࡱ	+ ഥ) D࡯+	 ) F is given by [ (࡭ഥ+B) C +ࡰഥ] E+	ࡲഥ 
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Example : 

Simplify (AB+CD). ((࡭ഥ+࡮ഥ).(࡯ഥ+ࡰഥ)) = 0 

 

Theorems of Boolean Algebra 

The theorems of Boolean algebra can be used to simplify many a complex Boolean 

expression and also to transform the given expression into a more useful and 

meaningful equivalent expression.  

Theorem 1 (Operations with ‘0’ and ‘1’): 

(a) 0.X = 0  

 (b) 1+X = 1 

Theorem 2 (Operations with ‘0’ and ‘1’): 
 
(a)   1.X = X  
 (b)  0+X = X 
 
Theorem 3 (Idempotent or Identity Laws): 
 
(a)  X.X.X… .……… .X = X  
(b)  X+X+X +···         +X = X 
 
Theorem 4 (Complementation Law): 
 
(a) ࢄഥX    = 0  
 (b) X+ࢄഥ = 1 
 
 
Theorem 5 (Commutative Laws) 

(a) X+Y = Y +X  

(b) X.Y = Y.X 

 

Theorem 6 (Associative Laws): 

(a) X+(Y +Z)= Y +(Z+X) = Z+(X+Y) 

 (b) X.(Y.Z)= Y .(Z.X) = Z.(X.Y) 
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Theorem 7 (Distributive Laws) 

(a) X.(Y +Z) = X.Y +X.Z  

 (b) X+Y.Z = (X+Y) .(X+Z) 

 

Theorem 8 : 

(a) X.Y +ࢄഥY = X  

 (b) (X+Y).(X+ࢅഥ)= X 

 

Theorem 9 : 

(a) (X+ࢅഥ ).Y = X .Y  

(b) X.	ࢅഥ +Y = X+Y                    [ X.	ࢅഥ	+Y(1+X) =  X.	ࢅഥ +Y +XY  =  X(	ࢅഥ + Y)+Y ] 

 

Theorem 10 (Absorption Law or Redundancy Law) : 

(a) X+X.Y = X  

(b) X.(X+Y) = X 

 

Theorem 11: 

(a) Z.X+ Z.ࢄഥ.Y = Z.X+Z.Y 

 (b) (Z+X) . (Z+ࢄഥ+Y) = (Z+X ).(Z+Y) 

 

Theorem 12 (Consensus Theorem): 

(a) X.Y + ܆ഥ.Z +Y.Z  =  X.Y +X.܈ത 

 (b) (X+Y).(	܆ഥ+Z).(Y +Z) = (X+Y).(	܆ഥ+Z) 

 

Theorem 13 (DeMorgan’s Theorem): 

(a) ሺ܆૚ ൅ 	૛܆ ൅ ૜܆ ൅⋯………	൅  തതതതܖ܆..……………………૜തതതത܆.૛തതതത܆.૚തതതത܆ =	ሻതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത	ܖ܆	

(b) ሺ܆૚. .૛܆ .૜܆ ………………૝܆ . .  തതതതܖ܆+.…………………૜തതതത܆+ ૛തതതത܆+૚തതതത܆=  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത	ሻܖ܆
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Theorem 14 (Transposition Theorem): 

(a) X.Y + ܆ഥ.Z = (X+Z) . (܆ഥ+Y) 

(b) (X+Y).( ܆ഥ+Z) = X.Z+ ܆ഥY 

 

Theorem 15 (Involution Law) : 

X = ܆ന 

 

******************************************************************** 

Example : apply Demorgan's theorm to simplify  

Y =  ܣ	 ൅ ܧഥതതതതതതതതതതത+ D. ሺ	ܥܤ ൅  തሻതതതതതതതതതതܨ

Solution : 

Y =  ܣ	 ൅ ܧഥതതതതതതതതതതത+ D ሺ	ܥܤ ൅ 	ܣ ) = തሻതതതതതതതതതതܨ ൅ ܧഥതതതതതതതതതതതሻ.( D. ሺ	ܥܤ ൅  ( തሻതതതതതതതതതതܨ

 = (A+B̅ܥ).(ܦഥ+(E+ܨത)) 

 

Example : simplify the expression , using Boolean algebra techniques  ? 

Y = AB + A(B+C) +B(B+C) 

Y = AB +AB +AC+BB+BC 

Y = AB+AC +B+BC 

Y = AB +AC +B(1+C) 

Y= AB +AC +B 

Y = AC +B(1+C) 

Y = AC+B 

 

Sum-of-Products Boolean Expressions 

A sum-of-products expression contains the sum of different terms, with each term 

being either a single literal or a product of more than one literal. It can be obtained 

from the truth table directly by considering those input combinations that produce a 
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logic ‘1’ at the output. Each such input combination produces a term. Different terms 

are given by the product of the corresponding literals. 

 

Example : Convert each of the following Boolean expression to SOP form ? 

Y = AܤതC + ̅ܤܣത+ABܦ̅ܥഥ 

Y = AܤതC(D+ܦഥ) ൅̅ܤܣത(D+ܦഥ) (C +̅ܥ)+ ABܦ̅ܥഥ 

Y = AܤതCD+ AܤതCܦഥ +[̅ܤܣതD+̅ܤܣതܦഥ] (C +̅ܥ)+ ABܦ̅ܥഥ 

Y = AܤതCD+ AܤതCܦഥ +[̅ܤܣതDC+̅ܤܣതܦഥC]+ [̅ܤܣത̅ܥD+̅ܤܣതܦഥ̅ܥ]+ ABܦ̅ܥഥ 

Example :  find the truth table of next equation 

Y = ABC +A࡮ഥC +࡭ഥB࡯ഥ+࡭ഥ࡮ഥ࡯ഥ 

Decimal                   ABC               Y                       

   0                       000                 1         

    1                       001                 0        

        2                       010                1        

    3                       011                 0       

    4                       100                 0     

        5                       101                 1       

        6                       110                 0       

        7                       111                 1        

         

Product-of-Sums Expressions 

A product-of-sums expression contains the product of different terms, with each term 

being either a single literal or a sum of more than one literal. It can be obtained from 

the truth table by considering those input combinations that produce a logic ‘0’ at the 

output. Each such input combination gives a term, and the product of all such terms 

gives the expression. Different terms are obtained by taking the sum of the 

corresponding literals. Here, ‘0’ and ‘1’ respectively mean the uncomplemented and 
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complemented variables, unlike sum-of-products expressions where ‘0’ and ‘1’ 

respectively mean complemented and uncomplemented variables. 

 

Example :  find the (POS)? 

Decimal                   ABC               Y                       

   0                       000                 0         

    1                       001                 1        

        2                       010                1        

    3                       011                 1      

    4                       100                 1     

        5                       101                 0       

        6                       110                 0       

        7                       111                 1        

 

Y = (A+B+C) .(࡭ഥ+B+࡯ഥ) .( ࡭ഥ+࡮ഥ+C ) 

 

∑and ࣊ Nomenclature 

∑ and  notations are respectively used to represent sum-of-products and ࣊ product-

of-sums Boolean expressions. So for last example  

Y=	( 5,6 ,0 )࣊  

Y=	∑( 1,2,3,4,7)  

 

Karnaugh Map Method 

A Karnaugh map is a graphical representation of the logic system. It can be drawn 

directly from either minterm (sum-of-products) or maxterm (product-of-sums) 

Boolean expressions. Drawing a Karnaugh map from the truth table involves an 

additional step of writing the minterm or maxterm expression depending upon 

whether it is desired to have a minimized sum-of-products or a minimized product of 
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sums expression. Having drawn the Karnaugh map, the next step is to form groups of 

1s as per the following guidelines: 

1. Each square containing a ‘1’ must be considered at least once, although it can be 

considered as often as desired. 

2. The objective should be to account for all the marked squares in the minimum 

number of groups. 

3. The number of squares in a group must always be a power of 2, i.e. groups can 

have 1, 2, 4_ 8, 16,  squares. 

4. Each group should be as large as possible, which means that a square should not be 

accounted for by itself if it can be accounted for by a group of two squares; a group 

of two squares should not be made if the involved squares can be included in a group 

of four squares and so on. 

5. ‘Don’t care’ entries can be used in accounting for all of 1-squares to make 

optimum groups. They are marked ‘X’ in the corresponding squares. It is, however, 

not necessary to account for all ‘don’t care’ entries. Only such entries that can be 

used to advantage should be used. 

 

  X        0             1 

Y    

0 

1 

                

  X        0             1 

Y    

0 

1 

 

Karnaugh map of two  variables 

XഥYഥ XYഥ 

XഥY XY 

m଴ mଵ 

mଶ mଷ 
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   YZ       00           01           11           10 

X   

0 

 

1 

 

Karnaugh map of three variables 

 
Example :  Simplify the Boolean function 
 
F(X. Y. Z ) = ∑ (2.3.4.5) 
 
   YZ       00           01           11           10 

X   

0 

 

1 

 
  F = x'y + xy' 
 
Example :  use Karnaugh map to minimize the following POS expression : 

 (A+B+C). (A+B+Cത). (A+ Bഥ + C) .(A+Bഥ+Cത).) .(Aഥ +Bഥ+C) 

= (0+0+0). (0+0+1). (0+ 1 + 0) .(0+1+1).) .(1 +1+0) 

   AB       00           01           11           10 

C  

0 

 

1 

  

F=A. (Bഥ ൅  +AC	ሻ =ABഥܥ

m଴ mଵ mଷ mଶ 

mସ mହ m଻ m଺ 

0 0 1 1 

1 1 0 0 

0 
0 0 1 

0 0 1 1 
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   YZ       00           01           11           10 

X   

00 

 

01 

 

11 

Karnaugh map of four 
variables 

 

 

Don't care condition : 
 
Example : find output function using  the following truth table 
 

Decimal                   ABC               Y                       

   0                       000                 0         

    1                       001                 1        

        2                       010                1        

    3                       011                 0      

    4                       100                 x    

        5                       101                 x      

        6                       110                 x      

         7                           111                   x    

 

 

 

 

m଴ mଵ mଷ mଶ 

mସ mହ m଻ m଺ 

mଵଶ mଵଷ mଵହ mଵସ 

m଼ mଽ mଵଵ mଵ଴ 01  
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AB      00           01           11           10 

C   

0 

 

1 

    

Y= BഥC +BCത 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1 x x 

1 
0 x 

x 
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Combinational Circuits 

A combinational circuit is one where the output at any time depends only on the 
present combination of inputs at that point of time with total disregard to the past 
state of the inputs. The logic gate is the most basic building block of combinational 
logic. The logical function performed by a combinational circuit is fully defined by a 
set of Boolean expressions.  

Arithmetic Circuits – Basic Building Blocks 

Half-Adder 

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a 
circuit thus has two inputs that represent the two bits to be added and two outputs, 
with one producing the SUM output and the other producing the CARRY. 

 

Sum = AഥB+ABഥ= A⊕B                                            Carry =AB 

A      B     S       C   A      B 

0       0     0        0 

0        1    1        0 Half adder 

1        0    1        0 

1        1    0        1 

                                                                      Sum      Carry 

 

 

Full Adder 

A full adder circuit is an arithmetic circuit block that can be used to add three bits to 

produce a SUM and a CARRY output. 
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Sum = AഥB+ABഥ= A⊕B                                            Carry =AB 

 

 

A           B         Carry- in (Cin)             Sum                     Carry-out (Cout) 

 

0 0             0 0 0 

0 0             1 1 0 

0 1             0 1 0 

0 1             1 0 1 

1 0             0 1 0 

1 0             1 0 1 

1 1              0 0 1 

1 1              1 1 1 
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Combinational Circuits 

A combinational circuit is one where the output at any time depends only on the 
present combination of inputs at that point of time with total disregard to the past 
state of the inputs. The logic gate is the most basic building block of combinational 
logic. The logical function performed by a combinational circuit is fully defined by a 
set of Boolean expressions.  

Arithmetic Circuits – Basic Building Blocks 

Half-Adder 

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a 
circuit thus has two inputs that represent the two bits to be added and two outputs, 
with one producing the SUM output and the other producing the CARRY. 

 

Sum = ۯഥB+A۰ഥ= A⊕B                                            Carry =AB 

A      B     S       C   A      B 

0       0     0        0 

0        1    1        0 Half -Adder 

1        0    1        0 

1        1    0       1 

                                                                      Sum      Carry 

 

Full Adder 

A full adder circuit is an arithmetic circuit block that can be used to add three bits to 

produce a SUM and a CARRY output.                                            A      B      C 

 

Sum = ࡭ഥ࡮ഥC+࡭ഥB࡯ഥ +A࡮ഥC +ABC= A⊕B ⊕C                                     Full-Adder 
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Carry =࡭ഥ࡮C+A࡮ഥC +AB࡯ഥ +ABC = AB+ (A⊕B  ).C              Sum                    carry 

 

A           B         Carry- in (Cin)             Sum                     Carry-out (Cout) 

 

0 0             0 0 0 

0 0             1 1 0 

0 1             0 1 0 

0 1             1 0 1 

1 0             0 1 0 

1 0             1 0 1 

1 1              0 0 1 

1 1              1 1 1 
 

 

 

Half-Subtractor 

A half-subtractor is a combinational circuit that can be used to subtract one binary 

digit from another to produce a DIFFERENCE output and a BORROW output. The 

BORROW output here specifies whether a ‘1’ has been borrowed to perform the 

subtraction. The truth table of a half-subtractor,. The Boolean expressions for the two 

outputs are given by the equations 
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 DIFFERENCE = ۯഥB+A۰ഥ= A⊕B                                            BORROW 

 ഥBۯ=

 

 

Full Subtractor 

A full subtractor performs subtraction operation on two bits, a minuend and a 

subtrahend, and also takes into consideration whether a ‘1’ has already been 

borrowed by the previous adjacent lower minuend bit or not. As a result, there are 

three bits to be handled at the input of a full subtractor, namely the two bits to be 

subtracted and a borrow bit designated as Bin . There are two outputs, namely the 
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DIFFERENCE output D and the BORROW output Bo. The BORROW output bit 

tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher 

minuend bit. 

 

DIFFERENCE = A⊕B ⊕C 

BORROW  = ۯഥB + (A⊕B  ).	۱ത 

  

 

 

 

C

C
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